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SUMMARY 

Three-dimensional partial differential equations describing the migration of 
ions through a stationary medium under the influence of an electric field are developed 
and then applied to the analysis of steady-state and unsteady-state properties of iso- 
tachophoresis in one dimension. The shape of the front region between two ion species 
in the steady state is discussed, and the time development of the system from an 
arbitrary initial distribution of ions to the steady state is analyzed and illustrated by 
a numerical example. 
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INTRODUCTION 

Isotachophoresis’J is a type of electrophoresis wherein different ion species of 
the same sign become spatially separated from one another under the influence of an 
electric field as they migrate parallel to the field. The boundaries (fronts) between the 
different ion species all move with the same velocity. The ions of higher mobility move 
ahead of those with lower mobility. A common counter-ion species migrating in the 
opposite direction maintains charge neutrality. 

In this paper we present a theoretical analysis of the process of isotachophoresis. 
Partial differential equations describing the migration of ions through a stationary 
medium under the influence of an electric field are developed and then applied to the 
analysis of steady-state and unsteady-state properties of isotachophoresis in one di- 
mension. The original equations are three dimensional, contain terms describing ion 
diffusion, and also allow the possibility of arbitrary temperature and mobility distri- 
butions. It is shown that charge imbalance can be neglected to an excellent approxima- 
tion, and that the electric field is determined in terms of the ion distributions by an 
equation similar to Poisson’s equation. The solution of this equation is trivial for 
one-dimensional systems. Analysis of a one-dimensional system with constant tem- 
perature and mobilities shows that the transition region between.the two ion species 
in the steady state has a finite thickness (typically 10m3 cm) determined by the effect 
of diffusion. The exact shape of the transition region is discussed. The steady state 
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with an arbitrary number of ions present can be determined completely by solving 
one ordinary first-order differential equation. The unsteady state is analyzed using a 
model in which tile diffusion constants approach zero. Tile approach to the steady 
state from an arbitrary initial state is particularly simple if only a leader ion and a 
terminator ion are present. This is described using the method of cllaracteristics. The 
non-linear partial differential equation being solved is not by itself sufficient to deter- 
mine the evolution of the system after the shock front (boundary between leader and 
terminator) becomes sharp, but must be supplemented by tile relation between the 
instantaneous speed of the front and the discontinuity in ion density. A computer- 
generated numerical example is presented which shows the time development of such 
an isotachophoretic system from an arbitrary initial state, the formation of the shock 
front and the eventual approach to tile steady-state configuration. 

FUNDAMENTAL EQUATIONS OF 1SOTACHOPHORESIS’ 

Suppose that several species of ions are present in an isotachophoresis appa- 
ratus, where they migrate through a tube under the influence of an applied electric 
field E. We restrict our treatment here to the case where the ions are contained in a 
slafior~ary medium. Let thejth species of ion have charge c-/~, charge density cJ, mass 
mJ and velocity vJ. The dynamical equation describing the balance of forces acting on 
tllis ion species is of the usual hydrodynamic type: 

where mJp,/q, is the mass density of this ion species, dv,/dr is the acceleration (material 
derivative of the velocity field) (I is the time), FJ is the force per unit volume, and PJ 
is the ion pressure. In practical situations ions adjust tlleir velocity very rapidly to 
adapt to cllanges in the applied force, so that the effect of ion inertia is negligible. 
Therefore, we take 

I;; - VPJ=o (2) 

Two kinds of force acting on individual ions contribute to F,. One of these is the elec- 
tric force q,E. The other is the viscous force -qJvJ, which opposes motion of the ion 
through the medium. This force is proportional to the velocity. The coefficient of 
proportionality vJ in genera! depends on the temperature T, but is otherwise constant 
if the density of ions is low. To get FJ we multiply the force per ion, q,E - qJvI, by 
the number of ions per unit volume c,/q,. Thus 

FJ = e.M - VJ/PJ) (3) 

where ccl = q,/q, defines the ionic mobility. Note that for a given ion species eJ and 
pJ are either both positive or both negative. Since we are assuming that the density 
of ions is low, the ion pressure is given adequately by the ideal-gas law 

P., = (e,lcj,)kT (4) 

where k is Boltzmann’s constant. 

* Boldface symbols represent vector terms only. The same symbols not in boldface represent the 
analyses of systems with one-dimensional geometry. 
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Inserting eqns. 3 and 4 into eqn. 2, we obtain 

P,(E - V,/P,) - vKWq,k,l = 0 (5) 

Thus. the current density of thejth ion species J, is given by 

JJ = e,v, = P,B& - cL./v~(W~_hI (6) 

Conservation of the number of ions of thejth species is expressed mathematically by 
the continuity equation 

ae,Pr = -V . J, = -v * b,e,E) + c7. ~~.,vKWq,)e,l > 
..L 

(7) 

Note that, if p, and T are independent of position, the last term in eqn. 7 can be written 
as DJozeJ, where D,, which is a diffusion constant, is given by the Einstein relation 

D, = ru,k%, (8) 

To get some idea of the meaning of eqn. 7, suppose for the moment that we can choose 
,s~, Tand Eall to be constant. (In reality we are not free to choose E arbitrarily). Then 
eqn. 7 becomes 

ae,/at = -pJE* v@J + DJv2@J (9) 

which is an easily soluble equation. One can show that the time evolution of solutions 
to eqn. 9 consists of a gradual diffusive spreading of e, imposed on a uniform propaga- 
tion with velocity p,E. In other words, in a coordinate system moving with velocity 
p,E, only a diffusive spreading would be observed. This fictitious example illustrates 
the concepts of ion drift and diffusion. However, the formation of sharp boundaries 
(shock fronts) between different ion species, which is the principal distinguishing 
characteristic of isotachophoresis, occurs precisely because E in reality is not constant, 
but depends on the charge densities present. Thus, eqn. 7 describes non-linear wave 
propagation. Ordinarily the effect of diffusion is very small, with one important excep- 
tion. Diffusion gives the shock fronts a finite thickness and determines the properties 
of the transition regions between different ion species. 

In order to show how E is related to the charge densities, we begin by consider- 
ing the Maxwell equation 

v x H = J -I- E aEJi3t (10) 

where H is the magnetic field, J = C,J, is the total current density, and e is the dielec- 
tric constant of the medium. Using eqn. 6, we can write eqn. 10 in the following form: 

Wat + (Z~,e,le)E = ( 1 /E) {V x H + ~~~olW’/s_Je~l> (11) 

If we pretend for a moment that E is the only quantity in eqn. I1 which de- 
pends on t, then the solution of eqn. 11 is seen to consist of the sum of two terms, a 
“static” term 
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and an exponential decay with a decay rate y = .ZP~Q,/E. We can estimate the size of 
y by using values of mobility and charge density which are typical of isotachophoresis 
experiments. Assuming a mobility of 5 x 10 -4 cm2/V ssec, a charge density of 2 C/cm3, 
and E = a0 = 8.854 x lo-l4 C/V-cm, we see that y has the order of magnitude 

y w IO’O set- l (13) 

This is much faster than any rates which occur in isotachophoresis. Even in the 
vicinity of the shock fronts, field and charge density variations occur at a rate many 
orders of magnitude slower than y, as we shall show later. Therefore, the electric field 
is well able to follow variations in y and variations in the right-hand side of eqn. 11, 
and E is given to an excellent approximation by eqn. 12. Clearly this approximation 
is equivalent to neglecting the displacement current terms proportional to aE/h in 
eqns. 10 and 11, so that eqn. 10 now becomes 

vxH=J (14) 

Combining eqn. 14 with the law of conservation of charge, we obtain 

@/at = -v*J= ---(v x H)= 0 (15) 

so that the net charge density Q = &, is independent of time. In fact, it is entirely 
consistent with our approximation to set Q = 0. We do so henceforth. Note that this 
approximation can be regarded as the zeroth order of an expansion of the exact 
solution in powers of E. In particular, the net charge density is given to first order by 
Gauss’s law (e = .57-E), where E is the zeroth order solution for the electric field. 

Magnetically-induced electric fields (Faraday’s law) are negligible in isotacho- 
phoresis, so that v x E = 0, and we can derive E from a scalar potential: 

E=-VT (16) 

Summing eqn. 7 over j and using eqn. 16 and the condition Q = 0, we obtain 

v ’ (zju,c,~~T) = - v - -t&Jv W%/,k,I ) (17) 

This is the fundamental equatiori determining T at any given time once eJ. ,uu, and T 
are specified as functions of position at that time. Eqn. 17 is similar in structure to 
Poisson’s equation, In essentially the same way as for Poisson’s equation one can prove 
that the solution of eqn. 17 is unique, once boundary conditions have been specified. 
The proof depends only on the fact that the conductivity &uJp, > 0 everywhere. In 
general, mixed boundary conditions must be used. The potential q~ is specified on the 
electrodes by the externally applied voltage, and the normal component of E = -VT 
must be zero on the walls of the vessel. The latter condition may be obtained by 
multiplying eqn. 6 by q,/,uJ, summing over-j, and using the facts that Q = 0 and that 
the normal component of each ion current density J, is zero on the walls of the 
vessel. Once eqn. 17 has been solved for E and the result substituted into eqn. 7, one 
can in principle integrate eqn. 7 to find the complete solutions for the charge densities 
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as functions of space and time. These solutions are subject to the boundary conditions 
that the normal component of v[(kT/q,)c,] be zero on the walls of the vessel. 

As a practical matter eqn. 17 can be solved easily only for the simplest 
geometries. For the remainder of this paper we consider the very important case of 
one-dimensional ion migration, where all quantities are assumed to depend only on 
the x-coordinate and on time. This case therefore describes isotachophoresis inside 
straight cylindrical tubes. The stability of the one-dimensional solutions with respect 
to small three-dimensional perturbations is an open theoretical question which is not 
treated in this paper, but which is under investigation. However. nearly one-dimen- 
sional ion migration is observed experimentally under a wide range of conditions, 
though not under all conditions. 

We re.StriCt our treatment t0 the case Where T and pJ are Simply COnStantS. 

This is often not close to being true experimentally, since Ohmic heating (at a power 
density E-J) is occurring in the medium. However, this case is much easier to analyze 
mathematically. The effects of temperature gradients have been considered by 
Coxon and Binder3 and previously by Hinckley J. The solution of eqn. 17 for one- 
dimensional ion migration is trivial: 

The current density J may depend on t but not on X. For simplicity we assume hence- 
forth that J is simply a constant, i.e., we are operating the apparatus with a constant- 
current power supply. Eqn. 18 is the one-dimensional equivalent of eqn. 12. Inserting 
eqn. 18 into eqn. 7, we obtain 

(19) 

If we multiply eqn. 19 by I/pJ, sum overj and use the condition 2 = 0, we obtain the 
useful relation 

(20) 

At this point we restrict our consideration to the following example of an iso- 
tachophoresis system. This example can be generalized in a straightforward manner. 
Suppose E and J point to the right (direction of increasing .Y coordinate). A single 
negative counter-ion p. occupies the whole tube and migrates to the left. A leader 
ion cl of high mobility occupies the right end of the tube. cI is asymptotically constant 
as x + 00. A terminator ion e,, of low mobility occupies the left end of the tube. ,o” 
is asymptotically constant as x + -co. The middle of the tube contains positive ions 
e19 I929 - * *v en which may be mixed together. We suppose that ,uI =_ ,z2 > . . . > ,uu,. 
By using the condition of charge neutrality we can eliminate the negative ion co from 
the dynamical equations. In particular, eqn. 20 may be written: 
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THE STEADY STATE 

As the system just described evolves ill time, it approaches a steady-state con- 
figuration in which the ion species are separated from each other into zones with @I 
leading c2. c2 leading p3, etc., and c,, following behind. All the positive ions migrate 
with a constant speed c to the right. The different ion species are separated by rather 
sharp boundaries, but away from the boundaries the charge densities and the electric 
field are essentially constant. In this section we analyze the steady-state configuration. 
In the following section we show for a simple example how a general initial state evolves 
toward the steady state. 

In the steady state we can assume that all dynamical variables are functions only 
of the variable 5 = x - ct. Then, for instance, the equation 

+,/at = --(a/ax)(pu,E@,) + D,F@J/W (22) 

becomes 

-C@,’ = -P,(Q)’ + D,e,” (23) 

where ’ indicates differentation with respect to E. For j = 1, . . ., II eqn. 23 can be 
integrated immediately to give 

(-- c + p.&h?J = DJC’,’ (24) 

The integration constant must be 0, since poJ does not fill the whole tube. This is not 
true for co. In fact, one can show that 

(- c + pomeo = Doc)o’ + J (25) 

This can be proven by summing eqn. 24 over the positive ions, adding eqn. 25 and 
comparing the result with eqn. 18. The steady-state equivalent of eqn. 21 can also be 
integrated immediately to give 

where UJ is an integration constant which can be thought of as an overall measure of 
ionic concentration. 

We can obtain the Kohlrausch re1ations5, which relate the electric field and 
charge densities in the different constant regions away from the fronts, by using eqns. 
24 and 26. In the region containing thejth species of positive ion the field E, and charge 
density eJ are given by 

EJ = CICL, (27) 

and 

cJ = pd(p.~ - PO) W-9 

Furthermore, if we multiply eqn. 27 and eqn. 28, we obtain E, = cw[(pJ - po)eJ], 
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whereas eqn. 18 gives E, = J/[(pJ - p,,)~,]. Hence, we see that the wave speed is 
given by 

c = J/m (29) 

The relative magnitude of the charge densities everywhere in the tube. including 
the vicinities of the fronts, can be calculated from eqn. 24. This was first discovered 
by Konstantinov and Oshurkova’ and was discussed by them for the case II = 2. If 
we solve eqn. 24 for E, we obtain 

E = (c/p,) + (DJu,)(Q,‘/Q~) for .i = 1, . . . , 17 (30) 

Since the right-hand side is directly integrable and the left-hand side is independent 
ofj. one can easily show that all of the charge densities can be expressed in terms of 
a single function a(e) according to 

(31) 

where the numbers E, are integration constants. Thus, for any two charge densities 
pJ and l)&, we have 

CI = (exP [(DkpI/DJpk) In cd1 {exp[---c(e - 4,:J>/DJ -I- c(E - &kp,/,ukDJ]]. (32) 

One can see from eqn. 32 that, if cJ and C)k do overlap, the thickness of the overlap 
region is of the order (D,/c)(,u,J 1 pk - ,uJ I). Thus, the thickness of the fronts is of the 
order of a diffusion constant divided by c, except that it may be appreciably greater 
if the mobilities of the adjoining ion species are nearly equal. To obtain a numerical 
estimate of DJ/c, assume that qJ is equal to the absolute value of the electron charge 
and that ,uI = 5 x 10m4 cm*/V.sec. At room temperature kT/q, * l/40 V, so that 
we find from eqn. 8 that D, * 10B5 cm2/sec. Assuming that c = IOaf cm/set, which 
is a typical value, the front thickness is of the order D,/c * 10v3 cm. The time re- 
quired for the front to pass by a given fixed point is D,/c* = 10-I sec. Since this time 
is much longer than the time l/y * IO- lo set, we have established that the neglect of 
displacement current and charge imbalance (eqn. 14) is an excellent approximation 
even in the vicinity of the fronts. 

By substituting eqn. 31 into eqn. 26, one obtains a single first-order differential 
equation for a(E): 

1f all of the positive ions carry the same charge q, then eqn. 33 is a linear dif- 
ferential equation in the variable 0 *lkT. We have succeeded in reducing the analysis 
of isotachophoresis in the steady state to the solution of eqn. 33. However, this equa- 
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tion in general cannot be solved except by numerical techniques. For the sake of 
simplicity we restrict our discussion to an elementary example which illustrates the 
qualitative features of the general case. Suppose that all the positive ions have the 
same charge. Also suppose that the counter-ion is fixed in the medium, so that ,u~ = 0 
and D,, = 0. Then eqn. 33 has the solution 

&kT = fU/ iY exp [-c(E-E,)/DJ] (34) 
J=l 

and the charge densities are given by inserting eqn. 34 into eqn. 31: 

CJ = LIJ * exp [- c(E-6,)/D,]/ i: exp t--(E-&JDkl 
k=l 

(35) 

Clearly in this case OJ = -co. We now show that eqn. 35 describes a situation in which 
the different ion species are separated from each other in the order of their mobilities. 
To do this we write eqn. 35 in the form 

2, = OJ/ 2” exp [-c(E--Ek)IDk + ~(E-~J)/DJI 
k=l 

(36) 

The term in the sum for which k = j is equal to one. All of the other terms are either 
very big or very small, except in the neighborhoods of the fronts, which we assume for 
now to be very narrow and omit from the present discussion. In order for the 
magnitude of ,“J to be appreciable. none of these other terms can be very big. Thus, 
pJ is essentially equal to 0) at position 8 if (l - &)/Dk is minimized when k =.j. 
Otherwise @J is essentially equal to zero. The ion species are separated. with one and 
only one species present at each position. Consider two species c,~ and @k for which 
D, < Dk and suppose that eJ is present at position efJ’ and & is at position 6”‘. Then 

(r$(” - E,)/DJ < (tr” - &)/D/i (37) 

and 

(6”“ - &)/Dk < (tck’ - 6J)lDJ 

From these two inequalities one can easily show that 

efJ’ < e,k < Eck’ (38) 

where 

EJk = &J = ( DJ& - D,‘fJ)/( DJ - Dd (39) 

Thus, the pJ of lower mobility is located to the left of the c)k of higher mobility. The 
ions are separated in the order of their mobilities. The position of the boundary be- 
tween adjacent species (j = k + 1) is &. k+l. One can invert eqn. 39 to give the con-’ 
stants EJ in terms of the positions of the fronts. Since the charge densities are unaf- 
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fected by transformations of the type EJ + g, + aD,, we can choose 4, = 0 without 
loss of generality. The other constants 5J are then given by 

,tJ = i DJ . D”-- ; Dk . e 
k=t Dk 

bk-l,k 
k I 

(40) 

The situation just described becomes more complicated if some of the ionic 
mobilities are nearly equal or if c is very small. Then some of the fronts are broad, 
so that the ion species are not all well-separated from each other. The ionic concen- 
trations vary smoothly as a function of position and are given by eqn. 35. 

THE UNSTEADY STATE 

We now return to the partial differential equations (eqn. 19) and discuss how 
an arbitrary initial distribution of ions evolves toward the steady state. We shall sup- 
pose that the fronts which form are all very sharp. The diffusion terms in eqn. 19 are 
very small except in the neighborhoods of the fronts, where thederivatives of the charge 
densities are large. In this case it is a good approximation to idealize the exact equa- 
tions by taking the limit in which the diffusion constants approach zero and the fronts 
become infinitely sharp. Thus, in this limit the charge densities develop discontinuities 
at the fronts, and it is necessary to relate the instantaneous speed of the fronts to these 
discontinuities. 

In the limit in which diffusion is neglected. eqn. 21 can be integrated to give 

(41) 

Recall that in the steady state we found the expression on the left side of eqn. 41 to 
be simply a constant, except in the neighborhoods of the fronts (see eqn. 26). However, 
we see now that it is more generally a function of position determined by the initial 
conditions. As a simple illustration of how this situation can arise in practice, suppose 
that a tube is prepared containing leader and terminator ions initially separated by a 
thin partition at x = 0, but that the concentrations @I and e2 do trot satisfy the Kohl- 
rausch relation P&Z = I&(Pz - puo>ll[pz(pul - p,,)]. This means that r~ has different 
values on the two sides of the partition. At t = 0 the partition is removed, the current 
switched on, and the ions migrate to the right. However, the discontinuity in w re- 
mains fixed at x = 0. In other words, cOr is equal to its initial value for s < 0. but is 
given by the Kohlrausch relation for 0 c s < cf. This is exactly what is observed 
experimentally. Eventually, however, the discontinuity in cr at s = 0 becomes 
smeared out because of diffusion. 

For simplicity we henceforth restrict our discussion to the case where R) is 
constant. This is no real loss of generality, since the case where CIJ(S) is an arbitrary 
positive function of x can always be reduced to the case mathematically equivalent 
to cv = 1 by writing the dynamical equations in terms of new dependent variables 

GJ = pJ/m(x) and a new spatial coordinate 4 = _P w(x’)dx’. 
In the absence of diffusion eqn. 19 becomes 
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We can make a minor simplification in this set of equations by defining new variables 

SJ = KPJ - Pd/P,kJ (43) 

Then eqn. 42 becomes 

(443 

while eqn. 41 becomes 

; s, = (0 (45) 
J=l 

Note that ail’-explicit reference to the counter-ion has been removed by this transfor- 
mation. 

Eqn. 44 is an example of a system of quasilinear equations. The theory of equa- 
tions of this type has been developed in an article by Gel’fand’. As a practical matter 
the solution of eqn. 44 is much simpler if only one dependent variable is involved. On 
account of eqn. 45, this corresponds to the case 11 = 2. Aside from some remarks in 
an appendix, we shall confine our discussion to this case. We shall suppose for defi- 
niteness that II = 2 means that only a leader ion and a terminator ion are present in 
the tube. However, the same theory applies if other ion species with mobilities greater 
than or less than those of the two species under consideration are present respectively 
ahead of or behind Q, and c)~ and are separated from them by fronts. These fronts 
necessarily move at the steady-state speed. A region of pure er immediately begins to 
form ahead of the trailing front and a region of pure cl immediately begins to form 
behind the leading front. This situation has been analyzed for the case of uniform mix- 
tures of ions by Brouwer and PosternaB. 

For the case II = 2 we can reduce eqn. 44 to the following equation: 

ayqat = (a/a.rj(l /yj (46) 

where 

v = (JWWJ) -+ (cc*s1 + ccz~z) (47) 

The variable y is proportional to the conductivity, which means it is inversely propor- 
tional to the electric field: 

v = (J/,ww~>~/~ (48) 

Since S,(W) = co, sr(-00) = 0, sJoo) = 0, and sz( -woo> = o, we find that at f infinity, 
7/r has the asymptotic values: 

Y(w) = (/WJ/@)* 

. and (4% 
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An alternative form of eqn. 46 which is slightly easier to understand may be 
obtained by using the variable u = I/v,!J*, so that eqn. 46 becomes 

au/at + uaufax = 0 (50) 

The left-hand side of eqn. 50 has the form of a hydrodynamic derivative. and u has 
the units of velocity. The general solution of the non-linear wave equation (eqn. 50) is 

u =f(x - ur) (51) 

wheref(x) is the initial value u(x,O) of the function u(x,r). Eqn. 51 has a simple inter- 
pretation. It says that if the wave amplitude at a point x,, is uo, then the speed of this 
part of the wave is also u o. Thus, the higher amplitude parts of the wave travel faster 
than the lower amplitude parts. Since u(--00,O) = Jp,/,u,w is greater than u(oo,O) = 
Jp2/,uIo, the fast part of the wave to the left in time overtakes the slow part of the 
wave to the right, and a discontinuity or shock front is formed. The time evolution 
of the solution can be exhibited in detail by using the characteristic curves of eqn. 50. 
These are straight lines 

x = x0 + uor (52) 

along which the value of u is constant: 

uo = u(x,O) = U(.Yo + uot, f) (53) 

By using the initial data u&O) to determine the characteristics and drawing the 
characteristics on a graph as illustrated in Fig. 1, the solution u(x,t) at later times can 
be determined. However, this method by itself is not adequate past the time ‘G when 
a front forms, because the characteristics then begin to intersect. After this time the 
solution becomes discontinuous. 

We can calculate t as follows: Suppose that the characteristics through the 
points (.Y~.O) and (x1,0) intersect at (~,t). From eqn. 52, we have 

- 1 /t = [u(x,,O) - U(Xo,O)]/(X, - X0) (54) 

The right-hand side of eqn. 54 is the slope of the chord joining the points (xo,u(~o,O)) 
and (x,,u(xl,O)). Clearly t is minimized when this slope becomes the most negative, 
which is when x0 and x1 both approach the point where u(x,O) has the steepest slope. 
Thus, 

l/r = max. [-- a24(x,oyax] 

= (~,~Zw/J) max.[- aE2(X,0)/a.~] (55) 

For large t the solution for u or w has the form of a step which propagates to 
the right with velocity c = J/w: 

(56) 
ly(x,t) = (,v~w/,u~J)* for x > x0 + cl 
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Observe that the front speed is given in terms of the discontinuity in y by 

(57) 

where, for instance, y>‘-’ and y++’ are respectively the values of 7/’ immediately to the 
left and right of the discontinuity. It is possible to obtain eqn. 57 in a different way. 
We can “smooth out” the discontinuity in y by putting a diffusive term back into 
eqn. 46: 

avjat = (a/a.~)(l/7p) + Dazvla.9 (58) 

If we insert the steady-state solution q/~(e) into eqn. 58. we can integrate once to obtain 

-cy = 1 /y -t Dy' + K 
.a 

where K is a constant. However. since y)’ -+ 0 as x + fco. we find 

cl/)( -‘=) + t /yJ( - 00) = CyJ(oO) + 1 /y(w) (60) 

C = 1 /‘fJ( --oo)yJ(=') (61) 

In the limit D --t 0 the front becomes sharp, and eqns. 61 and 57 become 
equivalent. Note, however, that one does not obtain the correct front speed by adding 
a diffusive term to eqn. 50: 

au/at f uauja.y = Da+la_9 (62) 

Eqn. 62, which is known as Burgers’ equation, instead has the front speed 
J&(-IX) + u(oo)]. Thus, limiting solutions of eqns. 58 and 62 when D --f 0 are 
related according to u = l/w2 as long as these limiting solutions are continuous. but 
are different after the time when discontinuities develop. 

Between the time t when discontinuities develop and the time when the estab- 
lishment of the steady state is essentially complete, the front speed is still given by 
eqn. 57 but c(t) in general will depend on time, since p’-’ and y’+’ will continually 
change as new characteristics impinge on both sides of the front (viewed as a curve 
in the (x,t)-plane). It is also possible that more than one front will form. This can 
happen, for instance, if the system is prepared in an initial state consisting of a region 
containing a mixture of terminator and leader ions sandwiched between regions con- 
taining pure terminator and pure leader. However, if multiple fronts form they move 
at different speeds and eventually collide and merge to form the single front which 
persists in the steady state and moves at constant speed 400) = [u(-ca)u(+oo)]~. 

This phenomenon has previously been predicted by the theory of Brouwer 
and Postemas, and the dissolution of mixed steps has been documented by 
Longsworthg. (See also ref. 10.) 

In Figs. l-5 a numerical example is plotted to show the time development of 
u(x.t) from an initial continuous function u(x,O) to a Function which has nearly reached 
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t (SEC) t (SE,C) 

Fig. 1. In this figure, as well as in Figs. 2-5, we use a numerical example to illustrate the isotacho- 
phoretic separation of two ion species. These results are computed assuming that w is a constant and 
that the initial distribution of ions is described by u(x,O) = [O.Ol cm/scc][l - 0.G tanh (xlcm)]. 
This distribution implies that /(,//I~ - 2 and ~(00) = 0.008 cmlsec. The characteristics (lines of con- 
stant rr) of cqn. 50 are plotted (without regard to the formation of the shock front), using a space-time 
coordinate system moving with the speed c(w). After the time t = 166.67 set the characteristics 
begin to intersect, and it is impossible to determine u&t)) from this graph at times later than T. 

Fig. 2. This graph shows both the characteristics and the shock front. The front develops from the 
characteristic through the origin. where r&O) has the steepest slope. The trajectory of the shock 
front is determined by numerical integration of eqn. 57. Since the characteristics terminate at the 
shock front, rr(x,t) is well-defined at all times. 

I XICM) 
-3 -1 ^I I z 3 5 

Fig. 3. This graph shows the progressive steepening of U&J) and the development of the shock front 
as viewed in a stationary coordinate system. The curves are shown for time values t = 0,100, 166.67, 
200.84, 254.12, and 310.70 sec. 
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Fig. 4. The leader and terminator charge densities are shown as functions of x for the same values 
of I as in Fig. 3. We havcassumed here that /1,/Z = 14~ = -_r40 = 4 x low4 cm’/V-secand J = I .G x 
low2 A/cm2. The values of cl and c2 are read on the scales which increase upward and downward, 
respectively. 

Fig. 5. The electric field is shown as a function of x for the same values off as in Figs. 3 and 4. 

the steady state. Fig. 1 shows the characteristics, determined from the initial data, 
plotted in the (x - c(oo)t,r) plane without regard to the formation of the shock front. 
After the time when the characteristics begin to intersect it is impossible to determine 
u(x,t) from this graph. Fig. 2 shows both the characteristics and the shock front. The 
front velocity is determined from eqn. 57. Here the characteristics do not cross each 
other but terminate at the front. Fig. 3 shows u(x,t) plotted as a function of x for 
several values of time, beginning with 1 = 0. Figs. 4 and 5 show the corresponding 
curves for Q,,(x,?), Q~(x,I) and E(x,I), assuming typical numerical values for ,uO, ,uI, ,uz, 
and J. These computer-generated curves show quite clearly the ion separation and 
boundary sharpening which are the principal characteristics of isotachophoresis. 
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APPENDIX 

A simplified form of the uusteady-state equations 
The solution of the unsteady-state problem in isotachophoresis is more 

complicated if tr > 2. In this case one has a system of II - 1 quasilinear equations to 
be solved for 17 - 1 linearly independent functions of .V and t. Analysis of this system 
of equations is still in its preliminary states. The main result reported in this appendix 
is a linear transformation by which it is possible to reduce the I? eqn. 44 to II - I 
equations in a simple and symmetric way. The mathematical structure of the equa- 
tions is simplified in terms of the new variables, althouah the boundary conditions 
become more complicated. We define the transformation as follows: - 

" 
0,) = c SJ 

J-1 

P = 2 PJSJ 
J=I 

(Al) 

Here ynkJ is defined as the sum of all different products of combinations of diffcrcnt 
mobilities, excluding pJ, and taken k at a time. For example. if II = 4, then 

41 = P1(/h + p3 + p4)s, -I- p&d, + p3 + p4)s2 + p3(p, + pr __I_ p4),*3 _+ 

+ P4(P, + pz + p3)s4 (AZ) 

and 

c/z = pcI(Iu2p3 + pzp4 + /-13/24)s, fpz(/..qp3 +- p*p4 + p3p4)s2 + p3(p,p2 + 

+ PrP4 fi+p4)s3 + pq(p*p2 + pjp3 fprp3)s4 (AS) 

The variable p is simply the conductivity. The index k on the variables c/k generates 
independent variables only for k < II - 2, since (in_, is just a constant cz, where 
a. = (/%I&. * .~,,)oJ. By using eqn. 44 the system of quasi-linear equations obeyed by 
the variables p and qk is easily shown to be 

adat = 4ab9(m 

adat = wa.am . . . . (A4) 

The first equation in A4 is equivalent for II = 2 to eqn. 46. The determinant of the 
transformation Al is equal to the product of the II(II - 1)/2 mobility differences 
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Pl - P ,,,, i # m. Thus, the inverse of the transformation Al exists provided that no 
two ion species have the same mobility. It is not surprising that the transformation is 
singular if two ion species of equal mobility are present, since there is obviously no 
way that isotachophoretic separation of such ions can occur. Notice that, aside from 
the parameters a, the ionic mobilities do not occur explicitly in cqns. A4. Even the 
parameters J and a could be removed by a scaling transformation. However, the mo- 
bilities appear in the boundary conditions; the asymptotic values ofp and q(k are func- 
tions of the mobilities and of w. 
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